Hi All,
Today an UPR with SlopeHyperPolinomialSet, a Slope Mandeldrot.
Good week-end
Andrea

62dae82e65cd2.jpg

polinomialMandelbrot {
::nY/UMhn2t3V3PytNS+3Ng/fYQ/0unRbLSqP3D6h81i4DbuNI2PYvPsD0oWd3CubJFJ1jnpR+
j/KSKWsIl6Fbcu9wlFKvMsKSWksIZ9rYVtV23XUOWc6P9yXc3dj1jnqy301equp9cdxpfooZ
X1pH6bH3c3nr3NeMnFkGc3xq6DHH1lPV8cV/Qems/l9V7qHHy38VN76rKu7ddgcuet+/M5Nc
+b4Bc+m7KaGBBXXMU3cI/5qhX+ClEUjfZR3YdbT+m0N312VUWP+ceWwdnr6PUdudXVe7jV9Q
zBOjHb3lf+ypx6uihB1kvvoZorovqZUL3zFdw4fQLZgbVfewrDTjD5RpRRBCWqgLYRvJ41Bi
AWWiQEmyFRphisow7OXcoJXkxZZikUpIKaOAKntM2Lfx+2eYoLUS+cxT1SRzCCCurrqv8YV5
nyb3v/u91nqaKODK0iB+rvs/8GZ7hJS/z5be3p2uqv/ZoD/IqtfXFom7uXtStaegzwnrHLP+
DS+/XXAdnUOd3/1F1navAbD80XHIbVV1uc2rDkLIgc/piHZwKmSzN1Llw+733IZmP8z9yRBG
rnyD0Fe2U4zYBk118A9EAWkDVw4/dbZRA5V1Efzw522xjV7uTqWKk7nbUD1wp86dwqHaZRu4
1Ty4BZR4vldypqUMdgaX2muP3Lr7Ny63ffx+GWeZ7guIPHO+oFwQBTuoUl4YJBWKELFhlill
MdPRxePUafDODbqO0DLj8mWg4p9w+LsJVV0LXmDlFwBBUCaauc6D/HXuEqgjpPrOVo6/Q1PH
kzkLtyScHR3ZgjgsHBkcyWIQGikSdI0d1M0s9Bt2MjP+cHd3GI5ESYKwz38nr7HGv7dwlhi+
62N6pAsr9wzwoGoLX2euLXtPcFknZicFaAWWkTXBXDJNLiuYuGnvN41sgwwok3o5k4t8vm60
hMHKWgLpc9FR7MzRZdlJcbfoLZk/YzidbQiLp7Ujl53degrCmp3jPcluPAkcXShncOcN0tBR
ukxukJz6eqbDycJdViH0aRXBw8mhu6xDeKyDz1kH8UlH80lH8UmHmrNP4qO7KZO3DozwDna1
ViXBBOcDH19Cgx1prKGazVHdzFzEQ4MBw9EAl+q39QU2wN/BJEmS01NDA//EiOtXZRop6lvA
sbPvqyLPUJt64gc86Lln2YQNKG2+9F9nq+5L1N2rvQ7+mTtDVwd7u26GFISZ7p2edlfb9wYR
TZlux3rsLlaW59N7y1q1J8d9p5PV3pM330CW5VdZQRXt7QlqwAgatTjzqMjesYn64/5ihPBw
QK7eyyTGXrb2Rsu+YR/97y/vBU0iTT7/9VDlTDeX7wIS8VPcq6tNGtqSsagY9kuYorqc0aMu
u5R08smER+NHfAedtf2yS3RlQRd70czwHgoL6dmvtd/Q9T/Uxu6Lg3OTN2uzIX71Pp6FbaiC
0Y9KeT7eTNjvQzI8UtRYXm0mZg6MNL0SjtJ021e1k2duMpZ0VZn2WtjXnomdJdyx7C4MxYR/
oVla7yRg37gd8idkBvAOj+hPm/h38xpeXdC2Zxu/NX6fEOn/+cw1ixi/O/X+Dstv/P+3f/0t
Awvviz/1OpDHt9f9l6T7+eWO4ywrAfFWuaOUtAqO0cH+I1gxR6l9jCKRo9qf39487rUHK5ql
iLTj7JSuvDcRzT1aYTtwZ4RtDL91VynROFMxinbMb90kLS7bemMl1dr6pOki7a+6rMH+ZafB
d4R1E/k75AqmoV5ma/pfyWr25HJTLvJ0S5RD9tKc1UsbnmjuJqyat6kNJ1BCFb9hhvBsbW3W
vjee5v29nrbKO9jSzg5P9qnlyFegjxumqMbab6h69ElJQZcf8hLjjMSZD/yimmC52H3Qwt9v
sofHDbY/OsT19lI/6hBaZa3bLP2i1JJQB02USqBIcqRQlRTJth22NaZPS4Km01lgmkoKkkYr
gyCS5QSZjD1lVPS7d1jmOremIjSg10VzsF5ydEdv3D4KmaklNd4I48NKKFhTNEtwx6uOUfpI
wWKdRmZdPWX8TFn7ITfJptquO85FKCTNnqO3gzTFB3aUXRbUanqPjiQWGlQ94FGpM5swp2DY
NtHMd4cBu5CFNcbqalnIZ6iAXztxj40TWmTKLIlDJljszAp9yHAtPOiIDjg+5LF4xdZZy0XS
2TrrnPdjrHcSxUhsMPP0UeksFIJ5TvLEQz7NXYllR+VnxFosMZ8Hqea0W1T4BF4JjXGwTGaK
36E29wiephCjVjyjYDH7BdFzhyU3YvjFFJp1087l4WaDcW7pK7UTAuTvo1lN3YQHtq9Bb3Re
fcRDx6BzaEmadtY3jSXC3pipQTrpn/4x68N/gK4K3x2MBxIZaMZ02vTX9Hy38fsxY2B5+RJX
tvHW7w/t8XpNvrY93owfqFLIeYtrBd29oSP9BEHzw5jTthKWyieAdnQa3oeCyjE8j6GEp0i9
OxV48Gb1I89ovqaJ/BXQbNzP6OAg+lNjz8REYuwASPZIdnu9zn1bdjHBTGmdoyjg/oVaHt1O
+f9V/y1fRqyvqrjlvZihqBcTLmiVhuRc3GJmLGB2CwtBm8t/aBAUCJluI3WM0WMyWMeqoMMS
GRM+ZukQVSglCxSRYp4pStd5vSfap5y+L4jtMkcPahHdI1ZHNro8rwLtQyYNp8ZItHgXiMoV
96Q+k/XU/xsxrCym6ZElfHoamugJ1S9fbF0Z9zjmqtG35kNoeWDE2uLm3dhT3Fz7O32d+8uz
d6Ofe3DtdPce3Dd6e48uHZ7e08uH509o5dP22945dP2p7xed/9feqzjfGecbvfl2+qqfWn50
ezn1duX/5zEggKAxMBI8EgYmACpCIcmAC9EQ4MBERFQ0MBE5JgoZCImKg4ZCI2TAO7AA6xUo
RHfq4sMRAB6QJwNVv/hzY/hyjPNqqBKW3UPmfVapZ8Zwqxm33X0d3VdIiHfKlAOO+UmzzUe4
cvMIwYDAZ5R3LjM8+TAeEW/E9krhFqruHfQ/nS9f03nHfquANC9U9DGDaQ5yQqBwidpoBuid
ZTlhRbKwDaipYjHYqcKoFoGZYsSGx7opaVkikp+WOmPVUHpCumQ6/Io8sC5+hDNyYwo15TRd
ZXVpcPJQX8eH9NH13G03xnCdU5RIGkszQXg3ZVVfSVLwJX+M9jTnLANGnox4ENmpsUIW9CSh
+pCcknNMVqXg8JdbIRPHRFY91KiAc1CdH0qhDNAy+9GNhmSrLmgCh1mw/4XsjuIB1FylqgsU
F2DEyVrgMRjJlTmKrHdlyE8bQrMPkX8wUwz0VLVMycihqbFbtC3pR4anwirUhaGysTlrKis0
6VbToaQNH4MXxjVDqI/LvebsO0bu6CezSPJFtwJJWgj6jZj46YPoAN6Po8DmjKQ5S3LXgQsK
QGz6LBcbJW9IA912x+OdA333X9zgFIjP3q0ekoLKmKKjOpuxyScskALFq1GqQ7SdQ/aNhgN+
kN+IcgwWlAoKwcSdoq1cXdiSeEVH8SwxbotalrOGrjWt6SKVHdK3hSkP2DuvMdAlROgycPgy
o6USZ8K7j68/MOou8NWqOH0nbDND5SmTIuPIj/HMjURyGO/KD+rsZ6sAKXn1gdDZeFVRkOnF
nkkwZRTsFhG+sMWYcqKac6qCFTVlEklFnFYYnNx2wQkwNce5Lmyasa2MfKYypMPiM+zZGKkd
fB+ZIT6gj8WMV2J3IV27q3vvqvSGX+1sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN7
1sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN7/POb2x2sZ
zpZz+0FAKsYNZ2rJzeNZ2rJzeNZ2rJz+fTTmtOTxBUEkjtOZ1+bq7LPVZim4E42bsJXUdUUn
ealdJ5F6LDVYKoVvZVODk54ayaueKpZ8r2HlwUGjBuGoZz8c4gxVgwKe8YOL00QRW2XunIsZ
+Wwcct4Oyg8P2jjIrHHRrfKYW93Y1fjV/NW93Y1fjV/NW934fF+bEa93IN6fK/NWduY15iVn
LWduY15iVnL+96vM/Tf6swxriHKGqL3K2o/9trS23V83l5gJVwK86Hgmv/PgWhH+jK7wt7h+
pM575ChFOHsxr6RuI1kTiAj7C8s0oYkLmXlogEBPJjkXlgEsussgMDbWgnfHhMTGYyiDCzij
IygFjygHHkBuOYqw4SSWYQcUMKLOJJNoUATyGpkkEzTRpwTx0FFlGEDzYTmZYWfhYxQfYWNB
mLJcQF4KlHD+QEgyXk5ImkoMBmknQjClJihxOFlP3X8REh4NApLL8IfZbVGR+z+IzkPOOSwD
MsjpZSLOMMxKiYhtHRJouPO2Tyxm9IoZRMSK3wMpxihjDsAzxpkISH4GxkkOfLNFXgBZiUcD
NN0K4wsIUfkaWjhRiAiyIz/sYmAV0ZRRxpGBkF7KYyUBdOG2b4Z8UzihF4vRyCMrvkkkUG9g
OLwuTyYhZhCTFMzKNRwSY41IoRz1KMmZdmwSCTCxpCPgc+JLMNBrQYPbFLSTC44Awjn9+AzK
NFOCmmgvjQwdPlnwx7pMBulyAJGiySk6L9QyVuo444QBKkQ72KjzSjsVYXvQ/5kdWwek/AEZ
2bFg+NNAfgSUsV5EGEFESliZJLExg9Ncgjnt3GbWoRwD5CjZEhEj7tRwDLADNmKSM7thwh4M
wCrh/S7tJ490o0kkMcLMleRFoSxKI7twTaABgDc6s92U7CFaJe6Ljs1KSiisHpyisPVkngKm
M/9VeAZflidwnhdgV4CcY1B8ZYHcfsDkvPwBVKLjdw5+bq8ZAHEpcLsD4FlLDcwFLstyvF2B
XktstdO9iiH2BfG4BPM6GyPM9mYT8obgNxnhewjSIWQcQQ4zgQwK8AQIqjZgIcPUED7ZYIEh
sMOCPZ2ZTfYEiMuFUC3FLxw1ikQkxtQT4zgTwKycw6p4JiZ4JCf8EkvzWrDei4G4JCm/OLUt
VKu4JibhnI4CXwES8dmhnIuBeiQw9ATIS5G4JiZ4JC0/qJwEiQuFeiwHPxwPahdXxNwTEzwT
wKIbuu4JiZ4JCf8EkPdv1FPRcD8ERys92E6tWH8ExtwTEpCXwEiqYGeiYZ8ERG3BMhG+vFxT
EZpfBhecxwHKshPU+7I2G/wjXqWjd4asDXjd4asDXjd4asD/9asDL6LHLa+/NROcrN/hsFfE
6CPGKZx3gGs47PFOuLQftt/TbzW6xn8bG3Syb+IhtkPz/S2tCap93aubMLxX65FyyF8tE/Np
7Hwy4bEvysbGuyIfPLjuxDCpPkzPciZL/cwY/njHLuZoKjjXW2xZ3MUlJ+Td776ceoZS6NDV
J+AP3QVm67QcayNCVZWwyhqEfanzTMx31tY8BdCVpN8gePwkFQi3L9Nm2YEGML4gePwkpXCL
+GTbQC9DYJfWIzohH09Nm2wD6HwS8VdTPwkc1UMLqZ4z58CYJ+cOzDMJSBfYnXALDDnFSxE3
HYuU4B9DYJ+qOvAWGtwWrN8geBsMmfjAWGHRfTN9Nm2oEOP8geBsMJ05WG9Nm2oE6Fwy0Z7t
0wD6+GTb4B9DYJ+qupHYSUFZz2bziWOglZpePwkY7NYZsCbsCDmFkQNYxSBJ0Bwg7hYMLQhB
LFhQXMD+NCYJnmhGHUjZwGcfcDbwBpywB4gfDkDe4swhGSNA7idwvF4BPMzD6gCGOLgi3C/g
jJSyYhnKmbggAeJ4vG2yEJ3EFZLziu6ijA1c7ketlNbjAYtMaCUhX+MIhuEeAf2iIKQFLcQC
4KWK6lA/bgrslF4EaGC4CUV4sFRwyJCbbW6MAAUThXMpoLbndBebqTwIdAY2mejIYuNV4huQ
0GzMCtFNX5iusNJ0DdhIlkljg52ZGQ3G7huQEi1CtbEM3inUdRX2uk9/tIYhbEM3eL0lth0N
XHAmtzgv26HBTDfhb4dpAMbJAqU0ltzge3ypRj0BgZL/GRwcLGe3J0FiqgP/ecyioLbZheoL
O3XWMCmbnt16htQnIzQX+tF3QuNuhJOhNsof3J53aq1gHuG8w1gHuG8w1gHuG8w/N6HeYf1D
qoHSQOEf79vv6pxL91Xr6v/7aOq+2ud/bf7b34O+qPLGFd2PtPAxwlpv0Y1qqCmWyTfiffQX
XT7gEdSTowxlfqS+gzHftpvYhq4Xu5tN7lfvQquTBFvx+Z7VaL8U1j6gRa+gHq+sFDPBV99w
RT9s6LRxpuTFNVKjPKBpRjUFfG7tk6q+LP05Hkx+EgklLOlKpK/rLOdS+vZjD917kjRQ120p
9YgzzTckfLZea6DIHwUXAAtkCfap9ZNBYxZCoC2SMfz5GNIfaVH6NjSHr3LR4C5HHpgXzxPj
P7n+QA148RDqRDq4I+3+2c+bUfhOw5i5r8xQekull5J6bIAYJgDLXYdnr1LN1nqE8rtn6r9q
58KPvAwSvZ8j/H+V8wG0psY4tIcmNOMWfZ/NnoY26/OT+Xl7eGTVr+7t6v3q/er+7t6v3q/e
/u1fv/Sx4Yt6/dXge8R91b67G4/s+6FQc0byvvvAf9IO6plxXmveojeTTkfl+69b3RP7Hlto
UoK8H2aw/L6n3XXU+JA69SzO/fZgr+3t6f3q/dr+3t6f3q/dr+3t6f3q/dfp+3h/0SiBD3BY
ik5c2s/BjIm9Pi0ofVe49/gM/TDc
}

Hi All, Today an UPR with SlopeHyperPolinomialSet, a Slope Mandeldrot. Good week-end Andrea ![62dae82e65cd2.jpg](serve/attachment&path=62dae82e65cd2.jpg) polinomialMandelbrot { ::nY/UMhn2t3V3PytNS+3Ng/fYQ/0unRbLSqP3D6h81i4DbuNI2PYvPsD0oWd3CubJFJ1jnpR+ j/KSKWsIl6Fbcu9wlFKvMsKSWksIZ9rYVtV23XUOWc6P9yXc3dj1jnqy301equp9cdxpfooZ X1pH6bH3c3nr3NeMnFkGc3xq6DHH1lPV8cV/Qems/l9V7qHHy38VN76rKu7ddgcuet+/M5Nc +b4Bc+m7KaGBBXXMU3cI/5qhX+ClEUjfZR3YdbT+m0N312VUWP+ceWwdnr6PUdudXVe7jV9Q zBOjHb3lf+ypx6uihB1kvvoZorovqZUL3zFdw4fQLZgbVfewrDTjD5RpRRBCWqgLYRvJ41Bi AWWiQEmyFRphisow7OXcoJXkxZZikUpIKaOAKntM2Lfx+2eYoLUS+cxT1SRzCCCurrqv8YV5 nyb3v/u91nqaKODK0iB+rvs/8GZ7hJS/z5be3p2uqv/ZoD/IqtfXFom7uXtStaegzwnrHLP+ DS+/XXAdnUOd3/1F1navAbD80XHIbVV1uc2rDkLIgc/piHZwKmSzN1Llw+733IZmP8z9yRBG rnyD0Fe2U4zYBk118A9EAWkDVw4/dbZRA5V1Efzw522xjV7uTqWKk7nbUD1wp86dwqHaZRu4 1Ty4BZR4vldypqUMdgaX2muP3Lr7Ny63ffx+GWeZ7guIPHO+oFwQBTuoUl4YJBWKELFhlill MdPRxePUafDODbqO0DLj8mWg4p9w+LsJVV0LXmDlFwBBUCaauc6D/HXuEqgjpPrOVo6/Q1PH kzkLtyScHR3ZgjgsHBkcyWIQGikSdI0d1M0s9Bt2MjP+cHd3GI5ESYKwz38nr7HGv7dwlhi+ 62N6pAsr9wzwoGoLX2euLXtPcFknZicFaAWWkTXBXDJNLiuYuGnvN41sgwwok3o5k4t8vm60 hMHKWgLpc9FR7MzRZdlJcbfoLZk/YzidbQiLp7Ujl53degrCmp3jPcluPAkcXShncOcN0tBR ukxukJz6eqbDycJdViH0aRXBw8mhu6xDeKyDz1kH8UlH80lH8UmHmrNP4qO7KZO3DozwDna1 ViXBBOcDH19Cgx1prKGazVHdzFzEQ4MBw9EAl+q39QU2wN/BJEmS01NDA//EiOtXZRop6lvA sbPvqyLPUJt64gc86Lln2YQNKG2+9F9nq+5L1N2rvQ7+mTtDVwd7u26GFISZ7p2edlfb9wYR TZlux3rsLlaW59N7y1q1J8d9p5PV3pM330CW5VdZQRXt7QlqwAgatTjzqMjesYn64/5ihPBw QK7eyyTGXrb2Rsu+YR/97y/vBU0iTT7/9VDlTDeX7wIS8VPcq6tNGtqSsagY9kuYorqc0aMu u5R08smER+NHfAedtf2yS3RlQRd70czwHgoL6dmvtd/Q9T/Uxu6Lg3OTN2uzIX71Pp6FbaiC 0Y9KeT7eTNjvQzI8UtRYXm0mZg6MNL0SjtJ021e1k2duMpZ0VZn2WtjXnomdJdyx7C4MxYR/ oVla7yRg37gd8idkBvAOj+hPm/h38xpeXdC2Zxu/NX6fEOn/+cw1ixi/O/X+Dstv/P+3f/0t Awvviz/1OpDHt9f9l6T7+eWO4ywrAfFWuaOUtAqO0cH+I1gxR6l9jCKRo9qf39487rUHK5ql iLTj7JSuvDcRzT1aYTtwZ4RtDL91VynROFMxinbMb90kLS7bemMl1dr6pOki7a+6rMH+ZafB d4R1E/k75AqmoV5ma/pfyWr25HJTLvJ0S5RD9tKc1UsbnmjuJqyat6kNJ1BCFb9hhvBsbW3W vjee5v29nrbKO9jSzg5P9qnlyFegjxumqMbab6h69ElJQZcf8hLjjMSZD/yimmC52H3Qwt9v sofHDbY/OsT19lI/6hBaZa3bLP2i1JJQB02USqBIcqRQlRTJth22NaZPS4Km01lgmkoKkkYr gyCS5QSZjD1lVPS7d1jmOremIjSg10VzsF5ydEdv3D4KmaklNd4I48NKKFhTNEtwx6uOUfpI wWKdRmZdPWX8TFn7ITfJptquO85FKCTNnqO3gzTFB3aUXRbUanqPjiQWGlQ94FGpM5swp2DY NtHMd4cBu5CFNcbqalnIZ6iAXztxj40TWmTKLIlDJljszAp9yHAtPOiIDjg+5LF4xdZZy0XS 2TrrnPdjrHcSxUhsMPP0UeksFIJ5TvLEQz7NXYllR+VnxFosMZ8Hqea0W1T4BF4JjXGwTGaK 36E29wiephCjVjyjYDH7BdFzhyU3YvjFFJp1087l4WaDcW7pK7UTAuTvo1lN3YQHtq9Bb3Re fcRDx6BzaEmadtY3jSXC3pipQTrpn/4x68N/gK4K3x2MBxIZaMZ02vTX9Hy38fsxY2B5+RJX tvHW7w/t8XpNvrY93owfqFLIeYtrBd29oSP9BEHzw5jTthKWyieAdnQa3oeCyjE8j6GEp0i9 OxV48Gb1I89ovqaJ/BXQbNzP6OAg+lNjz8REYuwASPZIdnu9zn1bdjHBTGmdoyjg/oVaHt1O +f9V/y1fRqyvqrjlvZihqBcTLmiVhuRc3GJmLGB2CwtBm8t/aBAUCJluI3WM0WMyWMeqoMMS GRM+ZukQVSglCxSRYp4pStd5vSfap5y+L4jtMkcPahHdI1ZHNro8rwLtQyYNp8ZItHgXiMoV 96Q+k/XU/xsxrCym6ZElfHoamugJ1S9fbF0Z9zjmqtG35kNoeWDE2uLm3dhT3Fz7O32d+8uz d6Ofe3DtdPce3Dd6e48uHZ7e08uH509o5dP22945dP2p7xed/9feqzjfGecbvfl2+qqfWn50 ezn1duX/5zEggKAxMBI8EgYmACpCIcmAC9EQ4MBERFQ0MBE5JgoZCImKg4ZCI2TAO7AA6xUo RHfq4sMRAB6QJwNVv/hzY/hyjPNqqBKW3UPmfVapZ8Zwqxm33X0d3VdIiHfKlAOO+UmzzUe4 cvMIwYDAZ5R3LjM8+TAeEW/E9krhFqruHfQ/nS9f03nHfquANC9U9DGDaQ5yQqBwidpoBuid ZTlhRbKwDaipYjHYqcKoFoGZYsSGx7opaVkikp+WOmPVUHpCumQ6/Io8sC5+hDNyYwo15TRd ZXVpcPJQX8eH9NH13G03xnCdU5RIGkszQXg3ZVVfSVLwJX+M9jTnLANGnox4ENmpsUIW9CSh +pCcknNMVqXg8JdbIRPHRFY91KiAc1CdH0qhDNAy+9GNhmSrLmgCh1mw/4XsjuIB1FylqgsU F2DEyVrgMRjJlTmKrHdlyE8bQrMPkX8wUwz0VLVMycihqbFbtC3pR4anwirUhaGysTlrKis0 6VbToaQNH4MXxjVDqI/LvebsO0bu6CezSPJFtwJJWgj6jZj46YPoAN6Po8DmjKQ5S3LXgQsK QGz6LBcbJW9IA912x+OdA333X9zgFIjP3q0ekoLKmKKjOpuxyScskALFq1GqQ7SdQ/aNhgN+ kN+IcgwWlAoKwcSdoq1cXdiSeEVH8SwxbotalrOGrjWt6SKVHdK3hSkP2DuvMdAlROgycPgy o6USZ8K7j68/MOou8NWqOH0nbDND5SmTIuPIj/HMjURyGO/KD+rsZ6sAKXn1gdDZeFVRkOnF nkkwZRTsFhG+sMWYcqKac6qCFTVlEklFnFYYnNx2wQkwNce5Lmyasa2MfKYypMPiM+zZGKkd fB+ZIT6gj8WMV2J3IV27q3vvqvSGX+1sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN7 1sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN71sZvmN7/POb2x2sZ zpZz+0FAKsYNZ2rJzeNZ2rJzeNZ2rJz+fTTmtOTxBUEkjtOZ1+bq7LPVZim4E42bsJXUdUUn ealdJ5F6LDVYKoVvZVODk54ayaueKpZ8r2HlwUGjBuGoZz8c4gxVgwKe8YOL00QRW2XunIsZ +Wwcct4Oyg8P2jjIrHHRrfKYW93Y1fjV/NW93Y1fjV/NW934fF+bEa93IN6fK/NWduY15iVn LWduY15iVnL+96vM/Tf6swxriHKGqL3K2o/9trS23V83l5gJVwK86Hgmv/PgWhH+jK7wt7h+ pM575ChFOHsxr6RuI1kTiAj7C8s0oYkLmXlogEBPJjkXlgEsussgMDbWgnfHhMTGYyiDCzij IygFjygHHkBuOYqw4SSWYQcUMKLOJJNoUATyGpkkEzTRpwTx0FFlGEDzYTmZYWfhYxQfYWNB mLJcQF4KlHD+QEgyXk5ImkoMBmknQjClJihxOFlP3X8REh4NApLL8IfZbVGR+z+IzkPOOSwD MsjpZSLOMMxKiYhtHRJouPO2Tyxm9IoZRMSK3wMpxihjDsAzxpkISH4GxkkOfLNFXgBZiUcD NN0K4wsIUfkaWjhRiAiyIz/sYmAV0ZRRxpGBkF7KYyUBdOG2b4Z8UzihF4vRyCMrvkkkUG9g OLwuTyYhZhCTFMzKNRwSY41IoRz1KMmZdmwSCTCxpCPgc+JLMNBrQYPbFLSTC44Awjn9+AzK NFOCmmgvjQwdPlnwx7pMBulyAJGiySk6L9QyVuo444QBKkQ72KjzSjsVYXvQ/5kdWwek/AEZ 2bFg+NNAfgSUsV5EGEFESliZJLExg9Ncgjnt3GbWoRwD5CjZEhEj7tRwDLADNmKSM7thwh4M wCrh/S7tJ490o0kkMcLMleRFoSxKI7twTaABgDc6s92U7CFaJe6Ljs1KSiisHpyisPVkngKm M/9VeAZflidwnhdgV4CcY1B8ZYHcfsDkvPwBVKLjdw5+bq8ZAHEpcLsD4FlLDcwFLstyvF2B XktstdO9iiH2BfG4BPM6GyPM9mYT8obgNxnhewjSIWQcQQ4zgQwK8AQIqjZgIcPUED7ZYIEh sMOCPZ2ZTfYEiMuFUC3FLxw1ikQkxtQT4zgTwKycw6p4JiZ4JCf8EkvzWrDei4G4JCm/OLUt VKu4JibhnI4CXwES8dmhnIuBeiQw9ATIS5G4JiZ4JC0/qJwEiQuFeiwHPxwPahdXxNwTEzwT wKIbuu4JiZ4JCf8EkPdv1FPRcD8ERys92E6tWH8ExtwTEpCXwEiqYGeiYZ8ERG3BMhG+vFxT EZpfBhecxwHKshPU+7I2G/wjXqWjd4asDXjd4asDXjd4asD/9asDL6LHLa+/NROcrN/hsFfE 6CPGKZx3gGs47PFOuLQftt/TbzW6xn8bG3Syb+IhtkPz/S2tCap93aubMLxX65FyyF8tE/Np 7Hwy4bEvysbGuyIfPLjuxDCpPkzPciZL/cwY/njHLuZoKjjXW2xZ3MUlJ+Td776ceoZS6NDV J+AP3QVm67QcayNCVZWwyhqEfanzTMx31tY8BdCVpN8gePwkFQi3L9Nm2YEGML4gePwkpXCL +GTbQC9DYJfWIzohH09Nm2wD6HwS8VdTPwkc1UMLqZ4z58CYJ+cOzDMJSBfYnXALDDnFSxE3 HYuU4B9DYJ+qOvAWGtwWrN8geBsMmfjAWGHRfTN9Nm2oEOP8geBsMJ05WG9Nm2oE6Fwy0Z7t 0wD6+GTb4B9DYJ+qupHYSUFZz2bziWOglZpePwkY7NYZsCbsCDmFkQNYxSBJ0Bwg7hYMLQhB LFhQXMD+NCYJnmhGHUjZwGcfcDbwBpywB4gfDkDe4swhGSNA7idwvF4BPMzD6gCGOLgi3C/g jJSyYhnKmbggAeJ4vG2yEJ3EFZLziu6ijA1c7ketlNbjAYtMaCUhX+MIhuEeAf2iIKQFLcQC 4KWK6lA/bgrslF4EaGC4CUV4sFRwyJCbbW6MAAUThXMpoLbndBebqTwIdAY2mejIYuNV4huQ 0GzMCtFNX5iusNJ0DdhIlkljg52ZGQ3G7huQEi1CtbEM3inUdRX2uk9/tIYhbEM3eL0lth0N XHAmtzgv26HBTDfhb4dpAMbJAqU0ltzge3ypRj0BgZL/GRwcLGe3J0FiqgP/ecyioLbZheoL O3XWMCmbnt16htQnIzQX+tF3QuNuhJOhNsof3J53aq1gHuG8w1gHuG8w1gHuG8w/N6HeYf1D qoHSQOEf79vv6pxL91Xr6v/7aOq+2ud/bf7b34O+qPLGFd2PtPAxwlpv0Y1qqCmWyTfiffQX XT7gEdSTowxlfqS+gzHftpvYhq4Xu5tN7lfvQquTBFvx+Z7VaL8U1j6gRa+gHq+sFDPBV99w RT9s6LRxpuTFNVKjPKBpRjUFfG7tk6q+LP05Hkx+EgklLOlKpK/rLOdS+vZjD917kjRQ120p 9YgzzTckfLZea6DIHwUXAAtkCfap9ZNBYxZCoC2SMfz5GNIfaVH6NjSHr3LR4C5HHpgXzxPj P7n+QA148RDqRDq4I+3+2c+bUfhOw5i5r8xQekull5J6bIAYJgDLXYdnr1LN1nqE8rtn6r9q 58KPvAwSvZ8j/H+V8wG0psY4tIcmNOMWfZ/NnoY26/OT+Xl7eGTVr+7t6v3q/er+7t6v3q/e /u1fv/Sx4Yt6/dXge8R91b67G4/s+6FQc0byvvvAf9IO6plxXmveojeTTkfl+69b3RP7Hlto UoK8H2aw/L6n3XXU+JA69SzO/fZgr+3t6f3q/dr+3t6f3q/dr+3t6f3q/dfp+3h/0SiBD3BY ik5c2s/BjIm9Pi0ofVe49/gM/TDc }

Andrea Spinozzi

https://fractalcosmo.com
 
0
reply
27
views
0
replies
1
followers
live preview
Enter at least 10 characters.
WARNING: You mentioned %MENTIONS%, but they cannot see this message and will not be notified
Saving...
Saved
All posts under this topic will be deleted ?
Pending draft ... Click to resume editing
Discard draft