I recently picked UF.5 up again to do some math experiments. I wrote a coloring algorithm, but calculations became very slow at a zoom depth of 1e24. I read UF.6 was a lot faster and maybe perturbation could also help (as I'm using Mandelbrot).

Opening the fractal in UF.6, the coloring algorithm doesn't seem to work anymore. I tried loading a non-perturbation version of Mandel, but it still doesn't work. The symptoms I'm seeing are equal to those when using Extended precision, i.e. large quantization of input values

e.g.

Entering:

0.444444444444861296182757053786418265553146200444003440041363028157654069228480050281532280718162049115995

gives the same result as:

0.4444444444448613

0.44444444444486131

0.44444444444486132 and

0.44444444444486133

and the next number giving a different result is:

0.44444444444486134

This is tell-tale of limited precision calculations.

Furthermore, increasing the precision from 70 to 100 or to 1000 doesn't change the result, or the calculation time.

Parameter:

```
Copy7OfExt3rnalRays-anim {
::BFWD1gn2tTVTPSNOQ07j08fwKcZ5w0TZH/5gs0ItMcYl4CzVkQmEnu9OJxROuZme/1vlT6G6
dBkQASch+QU7ylr3zue1rL5ayu+bu8CCJHy9eb1fGnOQ+D1zJxOi/pcda01TSuDzX5GDDVkH
Dt5dWuGI78ht7yWGHI9uD+0slVqTXyN4x/LkkupZrEKBbS+2Qe2W9Pxhre/LkXT5XzAG/Fv2
leg8X+UEL++5z24/lY1lXsAyCVbcT5Qc0Wd3TZ/JCWRiTumQ+glCAZwn26HiteLiMuKvL2aH
23nDTu55l7byNOP5S+xs9gfmMl8Nh5SZVIlHcTThxtrwhp4T2qrobUSTtmRNahwo0g4aYDAc
Wt0Q5UtCUatRf7zg7vvksiJxslctS+2ShoUMw6ZkMJ1IFamwwYKuRxv9ZMgDQVJxB3W82xoS
MP1G+SBNbApBRqumLY1cOjLNGhgpN1CFjqYKqBUCkaatnyudBx1aeXFxNut0dvCJJeJ40jc8
jr+E2z5kP3szWtmzp9waM/g/RbFsEG+0R6iJ8h1dzKxfKUerwWAQm8pmd+mHsxuOSXo3PiKD
b19Z3YrL1uZfHqnw320Bb1rcz5Xjx99LkY6dzZXKbhrxy8u37C9x9ZL1TxWTYcO06v5j9wOE
vx4o/yLwc+8t6DjeXik8TeXGT8MmM83tYbP8BX2vZfzKyH5zJl1bcHeVApV6ItWfHhN8z+pl
UmRS1MlQBialGfRx2uQIqpcJDFIc8lqu8hTrX6LyagppClUwLdVmGHoAxSsacFooaKeSuhSF
YXeFbUs+A9XI2s/L2CJvI+oGGgfFUQKpKDvmiLLAjrROYq5Y1M81JApWrMSmgyYCgjEQBgWw
p8aFjJxhLDHwJJgZAuSh4ua3g4i8Yby1Gw+zS/deIGxdKTupY2t4HQJlW1TWg0E7joKUqwZQ
q4Y4aj54GoK6oZx51C1GnO/JrEmQ8FNeeZYO/1Mc6L2i+xvFTnf7z8T1nJF3vd3Xzp5sh7zM
b+J4006x0QVA/H1zpIqcjN+7mzhBXOmKsbK+IWQ2G47S/TL9W4HU//vAbb1P8D==
}
mjd_private.ucl:ExternalRayFinder(OUTSIDE) {
::XdgTbgn29J5SzNNMQc87dm+dYJ5SSGMoVvFDlpcAOzNOr2YnqBXZPOq86TPrtcidIpxHk1+6
v+trUIGSf42bAoquxngU5+0nj7qLh7g799b6jFiJ4l42yumfW2RRYTF4HTmcV300OIVoae2j
pf8EeqM5pC8Jfkva5fXDvHWxhNwy2w6bvJn6BVzJXMh1phz/LguG68WNYtOnBhQO4HvDKu/X
htpnyBgTakCM7tMuNU9fV+JaC8qFeedzncT73A8rF+A6H9Mg/oqVhoveYgeofxC/D7z95G76
zG1v54oe2tyMIX+YTdTP9d7eIrybh5/IF3WW5fpO/iIFSDis4L/OV2RsAd+/AfN0feL6To13
5fG8T3LP6bThm4J1MEeRO+o69g9O5sPrG5ONa5GlhpEGrWSGalSJQpmzYUOMmofRiCtgxtoy
oVSm2x5WplxUD+EkFzgWkKS6QU5cqxRwAsTUTr/APj6vReDxdw+2mEgXnalWytOB64MaVhMt
GNOpAJzekJbienQSw4kat1acauC5cFTSobYMrSiShhz1anwJZoEZcHTaMvO08rDN/CQzusaz
ecPTtv379SduK775Q8Si+PwRETy0
}
mjd_private.ucl:DistanceEstimator(OUTSIDE) {
;
; Distance-estimator coloring algorithm for Mandelbrot and
; other z^n fractal types (Phoenix, Julia). This coloring
; algorithm estimates the distance to the boundary of the
; fractal (for example the Mandelbrot set) and colors points
; accordingly.
;
; Written by Damien M. Jones
;
::DfjUign29AVsONMMQ09Il/hTJLplSClRkQiBKiF2gNUlcjvUbJHfGbHRb/65sdLWewv79u39
Ort64T1VAMSzODeCkXgnhutbgHWVXZIylZzVfxR/ieYN0eZfXBc/2VMmZvD2WXNptCTWfr2K
ZzYnK6WbojdjiDhu2LrStc7NMUeK5y772OUknUE+xH7anFHtcQk4kYxUSaUHNIbdzr6QUYHR
YXIqnFRy3k4VoxNpLS+aad/oa+/6RypHTEvHnNDjkh8a7xhkPShXOIvaJezxeFLM3uT4FzQO
eJI/jJcRNZTut7kjsoN2UYumWm5x+HKlUabC38pSHggiWMS4ACBMCRC4RNqgoCB8qTANlxfX
a/2Zi8zLGBcmWAhHhlAH/e4NyDfwrAaO4p4GuTeK8dJsIMmzcMyJDty8WUX9Hc8yY6I=
}
```

Incorrect UF.6 result:

Correct UF.5 result:

[edit] Placed parameter in code block